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FOREWORD
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ABSTRACT

(Distribution Limitation Statement No. 2)

The response of a layered half-space to a progressing
normal surface pressure is evaluated. The half-space con-
sists of a single layer of a locking material that acts
elastically after compaction, and an underlying elastic
material., The surface pressure moves with a constant velocity
V, which 1s subseismic with respect to the speed of wave
propagation in both the upper layer after compaction and the
underlying half-space. It is assumed that a steady-state

exists with respect to a cocordinate axis attached to the
moving load.

The essentially subseismic layer - subseismic half-space
geometry leads to an elliptic problem that is solved by a

finite difference iterative technique. A computer program

for evaluating stresses and velocities at points in the medium
is available and results are presented for a typical con-
figuration of interest,
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SECTION I

INTRODUCTION

This paper presents a study of the problem of a
progressing normal pressure on the surface of a2 layered
half-space. The half-space consists of a single layer of
a locking material that acts elastically after compaction
and an underlying elastic material. The surface pressure
moves with a constant valocity V, which is subseismic with
respect to the speed of wave propagation in both the upper

layer after compaction (cP > g > V) and the underlying
1 1l

half-space (c > ¢ > V).

Fa 5

has been moving steadily for a long time so that a steady-

It is assumed that the load

state (of plane strain) exists with respect to a coordinate
system attached to the moving load. The theory is developed
for two types of progressing pressure lozdings; (a) a case

in which the progressing pressure is a step function in the

coordinate § = x + Vt over a range of & very large, and then

decays to zero at § = ®, and (b) a case in which the
progressing pressure has an exponential decay in the

coordinate £ = x + Vt, Fig. 1.

It should be noted that the material description for

the layer assumes a locking material that, after compaction,

acts elastically. This mathematical model is an approximation

PR

PPTI TR N

! 4

s o A i o Syt e mitibatis B bt A5 <o it Bp

. e



-~ - - - DA
2 5 -
-
(A
"
* T
: < )
K N . L
b e . ~
N : -~ ~
" I

T OTONE T MR VAT, CRLGF YA r g

G 93 1s IR ORI, B 0 1L BSOS AR %
- e - N

i

. —LARGE &

(b) ¥

';; v
s ,FIG.} — LOADING CONDITIONS :
REAL MATERIAL
APPROXIMATE MODEL
i
: > ¢ b
: €c ' i
o FIG. 2 - APPROXIMATION OF MATERIAL BY
:  LOCKING - ELASTIC MODEL
. 9 :

[TRP e Y

P10 b e A bk

P o COREASIAOMAZY S D an LY s

wrsaiaiy S ez hhast e

e Uit s aomeE




; : ; .
;ﬁi - *
2 ‘%;*QA
O ey ! B . “ ) - s L AN
to certain types of rzal materials as shown in Fig. 2. The
locking~elastic material has been;previouély sgtudied by Bieich, ;
’ ’ . %
Ref. [1]. A : _ :
In a previous paper, Ref. [2}, thé steady-~state problem ;
§% for a superseismic layer ~ subseismic half-space conﬁigqnatibn f
3 . o +s
§§ was studied. For that case, the problem was of a mixed type, :
4 |
j% (a) hyperbolic in the superseismic layer and (b) elliptic K
gg ! in the underlying half-space. Consequently, signals from the é
: underlying half-space outran the advancing surface pressure .
and the interaction stresses between the layers, i.e., 6z2 1
' g
and Uzé extended over the entire plane -= < £ < ®, The 3
; entire layer and half-~space were stressed, including that %
3 , g
e part of the region which was ahead of the moving load. Sharp &
;i shock fronts (P and S) were present in the superseismic layer, 2
5 only behind the leading front of the woving load, Fig. 3. :
& The present problem differs from the one treated in Y
oy ¥
%’1‘;:,.‘ o ‘\
: Ref. {2} in a siguificant way, which is best understood by d
% , !
i consicdering the layer to consist of a nonlinear hardening f
wt | materiszl, as indicated in Fig. 2., While the underlying half- ?
%5 space L3 subseismic in both the present case and in Ref. [2], ;
b the sictuation in the layer is superseismic at low stress 2
I level:, but subseismic at sufficiently high stress levels. , R
?7 n In the present problem which considers the nonlinear material f
g and a high stress level, there will, therefore, be a leading i
D‘o':{; ':;E
H
I ‘Z‘
¢
3
¢ f 3
y
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éhoék~corresponding to the first P-front in Fig. 3, but there

*
will be 'no further shocks to thke right of {(behind) this

'léading front. Ahead of this shock front, the stresses are

inkerently low. In the case of the locking material, Fig. 2,

~ the shock corfesponding to the first P-front in Fig. 3 is now

identified with a compaction front, Fig. 4. The "low" stresses
ahead of the front are assumed to vanish to permit the use of
the 16cking concept. It will be further assumed that this
édﬁpactton front is plane. This assumption is correct

according to Ref. [1l] In an infinite locking-elastic medium

~Asub1écted to a progressing step wave, but not for a decaying

pressure pulse where it is curved as indicated in Fig. 4. The
éurvature of this front is, however, not important if the
layer thickness is not too large compared to the distance
describing the decay of the applied surface pressure. The
inclination of the locking front in the present analysis will

be selected to be equal to the one found in Ref. [1l] for a

‘step pressure of intensity P = P0 « This leads to the con-

"figuration shown in Fig. 5. The problem becomes one of an
i;?egulafly shaped half-space with two layers, both of which
are subseismic with respect to the moving velocity V, i.e.,
V is smaller than the velocity of dilatational (P) and
equivoluminal (S) waves, in both layers. Hence, the dif-

ferentiai equations of motion in both layers become elliptic

* There is a transition level at which the stress is in-
sufficiently high and shear shock may nccur. It is
assumed in the present problem that the stress level is
sufficiently high so that this does not occur.
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and the solution reduces to that of an elliptical boundary

value problem in the irregular domain of Fig. 5.

The elliptic nature of the problem leads to a system of .
simultaneous linear algebraic equations on the displacements

’d at each point of a finite difference grid that covers the

fdpper layer and the underlying half-space. A crucial approxi-

o o

Y

_mate procedure, which is used in the numerical solution of the

L

‘boundary value problem, should be discussed at this point.

Iﬁe‘kétual domain of the boundary value problem discussed above

2

extends to infinite in three directions, i.e., =® < § < ® and

<

Sl i XL

0 <2< ® Fig. 6. To obtain a finite number of algebraic

”n

P

simultaneous equations in the numerical analysis, the infinite .

-
ey

DI R e e g et g
~ . . N PR

RN
7.
L 4

domain is arbitrarily reduced to the finite domain ABCDEF as

‘shown in Fig. 6, by assuming that the field quantities along

A

N

the boundaries of the rectangle BFED are same as those that
would be produced if a half-space of the underlying material

was subjected to the same progressing pressure signal as in

<
°,
A

g the actual problem, Fig. 7. Hence, it is assumed that the
values of the field quantities along the boundary BCDEF of

- Fig. 6 will be those which occur in the same locations for

P
e s v v oS0
TR 2B £

£eLa

the geometry of Fig, 7. These field quantities may be obtained

by a direct integration of the Cole~Huth solution, Ref. [3].

K
e e . el
fe AR e S et

’Jn a similar manner, the field quantities on the line AB are

D

e approximated by values from the locking-elastic media study

Doy A ¥ AT

of Ref. [1] for the step pressure applied on an infinite half-
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space and by an integration of the Cole-Huth solution for a

decaying pressure,

In defense of the approximation at the boundaries, it is
noted that it is inherent that the stresses at far away
boundaries do not effect the solution in the vicinity of the
shock, i.e., the only region in which a steady-state solution
has actual meaning. A computer code for the solution of the
problem in the manner outlined has been developed and is
available. Numerical results are shown for a typical con-

figuration of interest.

Section I1 presents the equations for the basic formu-
lation of the problem. The method of solution and some
comments on the computer code are given in Section IIT.

Finally, Section IV presents some numerical results and con-

clusions.

This paper is one of a series of steady-state solutions
that have been obtained for various elastic and inelastic
materials, Refs. [4]-[8]. While the solutions have been of
interest in themseclves, an additional purpcese was to provide
check results for several of the large finitc( 1ifference and
finite element computer codes, which are presently being used
to study ground shock problems in elastic and inelastic media.
Although these codes are primarily used for the solution of
transient, rather than steady~state problems, they generally
can also be used to model steady-state situations of the type

considered here.
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SECTION II

FORMULATION OF THE PROBLEM

Consider the geometry shown in Fig. 5 in which a layer
of thickneéess H of a locking~elastic solid, overlies a half-
spdace of a‘;econd elastic material. The layer is composed
of a locking material, which, upon reaching a certain compacting
strain €, 9 thereupon acts as a linear elastic homogeneous and
isotropic material, Fig. 1. The surface z = 0 is subjected to
a normal surface pressure which moves with a constant velocity
V. The velocity V of the moving load is subseismic with

tespect to dilatational and equivoluminal wave velocities both

in the compacted layer, i.e., p > g > V, and in the under-

1 1

lying half-space, cg > ¢cg >V. A systenm of Cartesian
2 2

coordinates is used in which z 1is normal to the layer surface
and x is parallel to the surface in the direction of the

moving load. The layer 0 < z < H is designated as region 1

and the half-gpace z > H is designated as region 2. The

ccorresponding elastic constants are indicated by the proper

subscript.

For bpath the compacted elastic layer and the underlying
half-space, the elastic stress-strain relations and the

equations of motion for this plane strain problem are written

as
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i% i Opx = o[ Q-V) 31+ v 57 : (1) .
3 ;
o . 28y, 2 v
g% 2z (l-2v){v ax ¥ (V) 9z 2) _ j
=3 -
¥ . g
% - o = g{dY 4 2u, (3)
o Xz ax = oz “
% : 3o Q0 _ N
2 ox 3z P (4) :
£ g
%“ ‘ 9¢, 30, ’
+ = p¥ o 1
g}i ox oz pv (5) “to
i s
§ Sy
?% ; Eliminating the stresses between these equations, the dis- P
%\/ placement equations of motion become ) *QQQ
R
: 2 2 2 2
3 3 3 2 9 4
9 ﬁ (A + 2u) ——% + (A + u) Bx;z + U ; = p ; (6)
% 9x 3z 9t
=R .
s 2 2 2 2
E R T R T e (1)
‘ - 9z 9% 9t
i For the steady-state problem under consideration a Galilean

transformation § = x 4+ Vt is used to replace x and t by

means of the relations

of 3 _ 3 . 9 _ o

. 3% - 3E ; 5e = Vg (8)
The stress-strain relations and the equations of motion

f%& become

. 2 ’
| % 5
2% 3
& >
¥

{ . et
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1 . ~
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R el

& 2

R N o
_ 26 . du dv
oxx B (1-°v)l(luv) 3 v 9z
2G du du
T, = (1_2v)[v 3E + (1-v) 5;]
- e , du
9%z = Gl + 3]
2 2 2
(1+2u-ovz)i—§+(A+u)gg§z+ua‘2‘=o
9g 9z
- 2 2 2
R (l+2u)3—-§-+(A+u)§g§z+(u-pvz)a——‘2'=0
9z 9&
- Note that
2 _ A+ 2u . 2 _u
Cp P g °s T ¢
Equations (12) and (13) may be written in the form
2 2 w2
Aa;+Bg§§+Ca;=0
g 2 3z
2 2 2
n3‘2’+aggg+r——a"=o
3z z 3k
where
_ 2 .2 2
A = cP v D = cP
- 2 _ .2 -
B = cP " <g E =B
_ 2 _ 22
C = cS F = CS \Y

For the subseismic problem under consideration, the

coefficients of Eqs. (17) are all positive and hence, the
system of equations, Eqs. (15)-(16) are elliptic in nature.
Consequently, the specified boundary conditicns on the

boundaries of the domain will uniquely determine the
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o4 solution of the equations of motion in the interior of the Lt
XY ¢
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gﬁ* domain. The boundary conditions are developed below. Py
24 R
§J From Fig. 4, it is seen that boundary conditions must %
%% be specified on the surface z=0, on the compaction front of T
g
the locking—elastic layer, on the surface z=H of the half~ e
; g
}' space ahead of the compaction front and on the layer half- %ﬁ
3 space interface, z=H, behind the compaction front. The g Eé
&% requirements un the stress and displacement quantities at :ﬁ
5§ =
By .

£ = o and 2z = o yill be discussed in the section on the

&5

.

A ’,
iR

£
e

numerical computation of the displacements and stresses by

§§ means of a finite diffevence grid which is superimposed on ﬁé
3 L
the medium. - %

T

B
[=2N

Y .
»3 The boundary conditions on the suxface z=0 are given .
' - by the relations R
B 4 ‘QE
B GZZ (E, Z=O) = =PU (g) (1'8) ¢
. OEZ(E, z=0) = 0 . {19) N
e ' b
< L
while on the surface z=H ahead of the compaction front %é
"
“, (i.e., £ negative) £
s,
& v,, (&, 2=H) =0 (20) ~§
K >
. z=H) = 0 (21) ‘?
‘ Op, (6 2=H) ( 5
): The boundary conditions on the layer interface z=H behind .
i . the compaction front require the continuity of stresses
i and Jdisplacements: "
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5

v

ul(g? z=H) uz(g,,z=H) )

i

v, (&, z=H) 62(5, z=H)

o (€, z=H)

022’1(5, z=H)r 22,2

(§, z=H) (£, z=H)

%z,1 = 2,2

- The problem of a step load moving on the surface of a

'ﬁa1f~space of a locking material which upon compaction,

. g *

betomes elastic and subseismic ), i.e., Cp > Cg > V, has
2 2

been solved in Ref. [1]. It was showr that a stress dis-

continuity in the form of a compaction front occurs in the

material and moves with the progressing surface pressure.

For a step wave surface pressure loading, the compaction

front will be plane, and the stress on the front will be

formal to the front with no tangential component. The

normal stress at the compaction front is given by the

reélation

o = - (1-v)P
N v + (1-2v)B cot B

where B is the angle of the front with the gurface z=0,
Fig. 5a. The tangential stress on the compaction front is

zero.

*)

The material after locking must have both its dila-
tational and equivoluminal velccities greater than the
velocity V of the progressing load. This is a neces-
sary condition for the continuity of the material
behind the compaction front, i.e., a condition that
prevents the locking front from separating from the
material. !
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The angle of inclination B of the compaction front is given

in terms of the veloucity V of the moving surface préssure

2 P - _(A-v) _
Pe y sin?B + (1-2v) éin B coS B

(25)

where

s

0<B8<B,, : . (26)

where the critical angle Bcr is defined by the reiatiqn

tan(ZBcr)
B

cr

= ~2(1-2v) - - @n

The fact that no steady-state solution is found if the
velocity V is less than a critical value Vcr corresponding
to Bcr is discussed in detail in Section III of Reéf. [17
and will not be repeated here, It will be assuméd that
the B-V relation for the present problem is such that a
steady-state solution exists and that the locking front
meets the leading edge of the moving pressure loading at

the point A in Fig. 5a.

As discussed in Section I of this paper, the com-
paction front for the present layered geometry is approxi-
mated by a plane front as shown in Fig. 5b. The boundary

conditions on this front are given by the relations

(1-v)P
0y(8,2) = - 5= (1-2V)B cot B

(28)

0, (E,2) = 0 (29)
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where £ and z are such that

o ) —lB

o
r
£
=]

- 2
S &

,an& Ehe félation between Brand V is given by Eq. (25).

>~ . The méthod of solution of this boundary value problem

is.discussed in Section I1II.
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SECTION III .
. = \\\\‘
‘ METHOD OF SOLUTION _ _ : -
v The equations of motion, Eqs. (15)-(16) éié\integrated 3
.

- \
numerically at the pivotal points of a finite difference grid-

~ e

work which is superimposed on the layer - underlying haif—gﬁage {
geometry, Fig. 9. For the elliptic problem being solVed,,phese « ;

differential equations are transformed into a set of simultaneous . \i

linear algebraic equations in the displacements u and v. As
described in Section I, this infinite system of equations is

truncated by applying approximate boundary conditions at all

. <
. e

pivotal points which lie on the boundaries of a rectangle; these

boundaries are located at a sufficiently large distance from the

PSS

area of prime interest, i.e., the neighborhood of the compaction

A%

Al front in the layer and the shallow portions of the underlying
half-space. Once the displacements are obtained, the stresses
can be calculated at the corresponding grid points by means of é

finite difference operators. ;

AT e ke

oz The method of solution for the system of simultaneous

algebraic equations was dictated by the available core size of

o
%4
e oy pagt B v

PO gy

o
el

B

B

>
1yt

the CDC 6600 computer that
pivotal points leads to an
equations in 2MN unknowns.

are of the order of 4N and

of inversion solution is of the order of 8MN".

was utilized. An M x N gridwork of
unsymmetrical set of algebraic

The band width of the equations

the core required for a standard type

2 For the larse

17
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number of points required to obtain acceptable detail in Fhe
present problem, the direct inversion approach became im-~
practicable. Consequently, an alternative iterative technique
was used in which the displacements u and v at each point in
the n+l approximation were calculated in terms of the corre-
sponding values in the displacement field at the nth approxi-
mation, as required by the appropriate finite difference
operator at tke pivotal point in question. 1In this itérative—
procedure, only 2MN of core was required and hence, this

procedure was adopted.

A brief summary of the various finite difference
equations which were utilized in the seolution is presented

in this section.

The nartial differential equations, Eqs. (15)-(16) may
be written at all ordinary interior pivotal points of the
grid in terms of unequally spaced finite difference operators.
Using the geometry of Fig. 10, the expressions for the

various second derivative operators are given by

[i+1,j] - [i'lxj]

D =
£ h, + h
L T (31)
D - {isj+l] bl [isj—l]
4 h + h
a b
D2 h h (hz + h,) (h_[i-1,3] - (h_ + hz)[i,j] +
&6 r i r L r r
+ hz[i+1vj]] ’(32)
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zz hh (h_+ h) (hyfi,5-1] - (b + b )[1,3] + b [4,5+1]1]  (33)

2 1 . .
DSZ = (hz + hr)(ha pry hb) [[1+1’j+l] - [1+l)j-l} - [1'13j+’ll +’

+ [1-1,3-111  (34) |
Substituting Eqs. (31)-(34) into Eqs. (15)-(16) leads to a

set of two simultaneous linear algebraic equations on the

values of the displacements u and v:

& u - ——é—-u + A u +
hg’(hr + h£> i-1,j3 hrhl i,j hr(hr + hl) i+1,]
+ B (v -v -V + v ) +
2(hr + hz)(ha + hb) i+1,j+1 i+1,j-1 i-1,3+1 i-1,j-1
C C C
+ u, - —u, , + w = g (35)
ha(ha + hb) i,j-1 hahb i.j hb(ha + hb) i,j+1
F v - £ v + £ v +
ha(ha + hb) i,j-1 ‘ hahb i,] hb(ha + hb) i,j+1
+ B

2(h_ + B ) (h_ + hy) (8549,541 7 Y441,3-1 7 %i-1,5+41 7 “1-1,3-1] +

+

D D D
v . - v + v = 0 (36)
hﬁ(hr + hl) i-1,3 hrhﬂ i3 hr(hr + hﬁ) i+l,]

Special formulas are of course required to express the

’

various conditions at the boundaries of the problem. A brief

description of the boundary conditions in finite difference

form follows.
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1. -~ Bounidary conditions at the compaction front

At the compaction front in the locking material layer,

the normal stress is given by Eq. (23) and the tangential
stress is set equal to zero. These conditions are written
“in terms of the displacement components and in the £,z system

of cgordinates. Writing the stress-displacement relations in

‘the dormal-tangential coordinate system, Fig. 11,

du du du
N T N
. 0., = Afx— + —] + 2u (37)
N axN axT BxN
du du
- N T
g, = Ufe— + +— (38)
T axT axN
~and using the N,T - £,z transformation relatioms,
3
uy = -u sin B + v cos B
u, = -u cos B - v sin B
X > (39)
25— = -gin B on_ cocs B
oX 9x
N N
%;E;- = ~00S 6 'g—?{'- = -gin B
T T )
the boundary conditions become
(A + WP - (Q cos 2B + R sin 2B) = 9
(40)

Q sin 28 - R cos 28 = 0
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where

o]
L]

Q=ug~-v “ L (41)

=
"
e
+
<

Simplifying Eqs. (40) to the form

(A + u)p - R =

|
q
[~}

—
sin 28
(42)

]

Q sin 2B - R cos 28 0

and substituting the finite difference operatois of Egs. f31}
for the displacement derivarives in P, Q and R, Egqs. (42) can
be solved for the displacements u and v, thus giving the
boundary conditions for the pivotal points which lie on the

compaction front.

2. Boundary conditions on the surface z=0 and on the interface

z=H (iaterface ahead of the shock front)

The boundary conditions on the surface z=0 are given by
Eqs. (18)-(19). Using the finite difference operators of
Eqs. (31), these conditions are written in terms of the

boundary displacements as

+ Kz(v - v 3 (43)

1, 0 Yi,3+1 i+1,j 1-1,3

v = K

1,9 = Kalugyy 5 - *

ui-l,j) Vi,j+l + KSP (44)
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oA

Fér_ghe»streSs free surface z=H which lies ahead of the com-

ﬁgction front, the quantity P is set equal to zero in

£48. (43)-(44).

3. -Continuity conditions on the interface behind the

_compacfion.front (z=H, £ > 0)

The continuity conditioas on this interface are given
by Egs. (22). The equations on the normal and tangential
stresses at this interface are given in finite difference

£orm by the relations

(}1 f Az)[u . - (Al + 2111 . Az + ZuZ)V )
3 VI Wb T IR SR n_ h, 1,3
_ (12 + 2u2)v . (Al + 2ul)v .
By 1,541 3 i,5-1
u, ® ¥, -
1, M 1~ W
o —— + s .Y - . =
(ha + hb)ui,j (hr ¥ hz)[vi+l,j Vio1,3)
= El u + Eg u
h “1,3-1 " h Yi,54

v

Equations {(46)-(47) are solved for the displacements U ;g and
k2

1,§ * thus giving the displacements on the surface z=H.
3

i - . ol
é ';Q' h ’ ¢
LP‘ ,}h o A ‘A. ~
wheig
A : 4 .
. . K. = __._llb_. K. = _...gk_..._ K. = __i’b___ (45)
2 h_+h, > 3 X +2p ° U5 X+ 2w *

(46)

(47)
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A special case occurs for the pivotal poimz which lies
both on the compaction front and on the interface. At this
point, one-sided forward differences must be used in the

expression for the 3/3E operator and Egs. (46)-(47) dbecome:

e R e R i PR S DO
h, 1,3 ha by 1,3 hy + b m: i+1,3
A A, + 2u A, + 2p
2 1 1 2 2 e
- u, oo+ Y, .+ L v, .. (48)
h, + b_ "i-1,3 b .31 £ 1,541
u u u u !
1 2 1 1 2
=+ ==)u, .-V, . =7—u, . . tz==u, . .+
G hb)“ s h_o i3 h Yi,3-1 N 1,341
u u i1
2 1 2
+ (s - ) -ty (49)
hy + B b_'Ti+1.3 T By * h_ i-1.3

Equations (48)-{49) may be solved for the displacements

u, . and v, _, at the point in questiom
1,3 1,3

4. Special case for point which is both on the surface z=0

and the compaction fromt, Fig. 12

In order to express the requirement that the stress in
the z-direction, Uzz + at the point Q, (i,j) inm Fig. 12 de
equal to -P, it is necessary to define an operator for 23/dz
at this point. This is done by utilizing a fictitious poimt

M with coordinates (i,j+1) and displacements u, and v,

M { "
The boundary conditions at the surface, Egqs. (18)-(19) are

written in terms of the four unknown displacements u,

i,3°

, u_and v 3

v M M

i,j

25
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Al Al + 2u1
ST I LTS T R T L A A (50)
Oox,i3 - E; fuy, - ui,j] + E: [vi+l,j - Vi;j] =0 (51)

An additional two equations on these displacementéuate
obtained from the boundary conditions on the normal and:
tangential stresses on the compaction front, Egs. (42);
These conditions are applied at the auxiliary_point Q,

(1 + %, j + %) of Fig. 12 in terms of averages of the dis-

placements at the surrounding points (i,j), (i+l,j),

(i+1,j+1) and (i,3+1). The resulting equations are of the

form of Fqs. (42) in which the quantities P, Q a2nd R are -

given by
poo dird, gt T Maen,s T %3 T Ve T Vien,gen T Va0 T Vg
7h 2h
T b
(52)
O Ygengn T Yieng T % T Y T Vaaa,ge1 T Ve T Vil
Q = 7h 2h
r b
(53)
G AP I U0 5 M DS T T3 U IO €5 S L5 Y V1,4 7 Vi3 " Yy
B 2h 2h
b r
(54)

Equations (42),

displacemen:s,

placements u and v at this special point.
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thus giving the boundary values of the dis-
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Figg:és 6 and 7

N

T In Séction_l, the method used to truncate the infinite
ggﬁiéfriinite difference equétions on the displacements was
described: Eséegtially, this was done by applying approxi-
maté boundary conditions at pivotal points on the boundaries
_Ag a tectangular domain BCDEF located at large distances
ﬁéfék>agd z) from the domains of prime interest near the com-
bgéétign_frunt. These displacement quantities on the bounda-
§f2§ B@QEF of the subseismic half-gspace were obtained by
-direct integration on the computer of the corresponding
quantities from the Cole-Huth solution for a point load P
gpving with subseismic velccity on the surface of a homo-
Agegeéusgisotropic elastic medium, Ref. [3]. The Cole-Huth
Adisplacemepés for the point load are given by Eqs. (25) and

(26) of Ref. [3] and are repeated here for convenience:

K ) B.K )
1 L 752 T
w=P =R (=) - P (- )
<L [K. %ncr. -8, K, fn r.]
V=T N T L1 Ty
thne
2 - M2
Ky = 7.2 s
1 - -
(2 MT) 4BTBL
28
.Kg L

2 2,2
(2 - MT) - ABTBL

28

(55)

(56)

(57)

(58)

[N

I RN i ey m—



o
<
5
'
3

> ”
: L
?
}
v
'
I3
'
b

]
§
i
1
s

45 T .
%: ) o T v 5
B '%.&- . .
: g v R N
g o o o~
HEAN
o
A
e
ey
i}-ﬁ}f?
' . 2,% PR .
B, = (1 - 1) o Bp = (-MpT 59
- and .
(18,)
. &L = x + 1BLz =re
(18,) | :
= x + i = { R ¢
ET x 18Tz r.e 1(60)
< .
0 <8, H bp 2 7 ]
The distributed loads of the present problem were
resolved into a set of equivalent concentrated loads for
the determination of these boundary conditions. A com-

prehensive study was made in order to assess the sensitivity
of the displacements at pivotal points on the rectangular
boundary BCDEF, on this resolution procedure. This in-
volved a study of the influence in the half plane of the
resolution of the distributed load into n concentrated loads
of magnitude P/n spaced at a distance of Ax units apart.

The results showed that the resolution of the distributed

loads into n concentrated loads does not practically in-
fluence the displacements of points located at distances of

15 to 20 Ax from the central loading point, in the horizontal

direction, and 20 to 25 Ax in the vertical direction. Hence,

12 this concentrated load resolution approach was utilized for !
flf# ' the pres .t layered problem. .
; 3
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6. Iterapive method for the solution of the system of l.near

algebraic equations using the over-~ and underrelaxation

‘ technique

The over- and underrelaxation iteration technique was

-uti@ized in the solution of the system of simultaneous algebraic

equgtions on the displacements. This approach is described in

detdil in Ref. [9] and will be outlined in this section.

/Aésumiﬁg_that the values of the displacement field at the n-1

~ agnd hth cycles are known, a set of starting values for the {n+l)

cycle, u'; v' can be obtained by means of a linear interpclation

'(undétgelaxation) of these previous values

' (n)

o™ 4 (1-g) 2D

"

w <1 (61)

(n) (n-1)

v! = wv + (1-w) v

or & linear extrapolation with w > 1 (overrelaxation). The
value of the parameter w = 1 would result in using u(n), v(n),
the values of the displacement from the nth iterative cycle

as the starting values for the n+l cycle. Using the values

of u' and v', Eqs. (61) as starting values, the values of

u(n+l) and v(n+1) are obtained for the n+l cycle.

From the theory of matrix iterative analysis, it may be
shown that the relaxation factor w should be chosen according

to the following requirements:

(1) There exists a limiting optimum value w, for which

the system converges most rapidly. If w > Wy the

30
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system converges, but with an oscillating pattern

with respect to successive values of u(n) and v(n>;"

a highly undesirable convergence for a digital,hom-

puter since it can lead to unacceptable arithmetic

conditions. Coasequently, ® should bhe chosen to be °

smaller than this limiting valne mo .

(2) The value of Wy depends on the grid size and decreases

when the minimum spacing between two consecutiwve

points is decreased.

(3) For large grids in the present layered problem, Wy

was found experimentally to be less thanpn unity, thus

requiring the use of underrelaxation, rather than

overrelaxation.

(4) The value of w, varies as u(n) and v(n> approach their

0

respective true values as the number of iterations n

becomes large. It is therefore advantageous
(n)

a variable w in the calculations in order

the rate of converg®nce.

7. Finite difference stress - displacement relations

Once the displacements u and v have been obtained

to use

to speed

by the

iteration, the stresses arr computed using the stress-dis-

placement relat-ons in finite difference form:

31
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. R i N ,\\ K -
x3 fi;g- LT -
u . - u . vV, . =V, .
: gp = (v apyptHal Aolad) g dadtl o Lisl (62)
- - “r 2 a b
< - u - u v -V
- "‘ N - 3 3 .-.
-9 h + h h h
A r L a b
’ u - u v - v
_ i,j+1 i,j-1 i+l,] i-1,13
- g u [—= + 2 2L ] (64)
£z ha + hb hr + h!,
32
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SECTION IV
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NUMERICAL RESULTS AND DISCUSSION

Yooyt

& RO’

This section presents a set of numerical results for the
case of a progressing surface load with a step distribution 5
in time. Results are presented for a typical configuration

that has the following material and geometric constantss

= 5,000 ft/sec

[¢]
[

|
[= N

\V = (0,25 X

X W

N Y

Py = 2.85 1b seczlft4

- c = 8,000 ft/sec

Y = 0.25

p, = 3.80 1b seczlft4

SR TGt sanate s

H = 100 £t
PO = 1 1b/ft
1§ V = 2,600 ft/sec

It is of interest to consider the typical variation of the

stresses 0, , UEZ and UEE at points in both the layer and .

! z 4
h the half-space, Figs. 13-15 show the variation of these E
F ! stresses with & at the depths z = 60 ft and z = 80 ft in the f
‘ :
.é layer, It is seen that in each case, the stresses rise B

sharply behind the shock front, oscillate and then decay to

33




the following limits: o = —Po s czg,L

2z,L 0 and UEE,L = 0.

The peak value depends upon the velocity of the moving load

ané increases with increasing Mach numbers MP and MS . Thesge

stress amplifications are increased as the transonic case

Ms = 1 is approached.

*ffigures 16-18 show the variation of the stresses Uzz s
852 aud,O'gg versus £ at points in the underlying half-space at
depth z = 260 ft and z = 800 ft. 1In this case, the peak values
aﬁe locatgd on a line that is °"nelined; the peak values for the
deeper points occur for smaller values of §, i.e., th2y run
ahead of the compaction front in the layer. Again, the peak
values inc.=zase as MP and us increase and approach high values

as MS + 1, i.e., the sonic point is approached.
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